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Calderón-Vaillancourt

Fourier integral operators

◮ Early ideas of Maslov and Egorov

◮ Theory of Hörmander and Duistermaat-Hörmander for real phases

◮ Complex phases of Melin-Sjöstrand

New singular integral operators

◮ Folland-Stein’s fundamental solution for ∂̄b
◮ Greiner-Stein’s Lp estimates for the ∂̄ Neumann problem

◮ Rothschild-Stein’s fundamental solution for
∑N

j=1 X
2
j
+ iX0

◮ Fefferman’s expansion for the Bergman kernel, subsequently simplified by
Kerzman-Stein, and refined by Boutet de Monvel-Sjöstrand.



Green’s function for the ∂̄-Neumann problem

The model case is the Siegel upper half-space U = {(z , zn+1 ∈ C
n+1; Im zn+1 > |z |2},

which can be identified with Hn × R+ via (z , zn+1) ↔ (ζ, ρ), ζ = (z , t), t = Re zn+1,
ρ = Im zn+1 − |z |2. Here Hn is the Heisenberg group

Hn = {Cn × R; (z , t) · (z ′, t′) = (z + z ′, t + t′ + 2Im zz̄ ′)}.

The ∂̄-Neumann problem is the following boundary value problem

2u = f on Hn × R+, (∂ρ + i∂t)u = 0 when ρ = 0.
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Key features of K

◮ K(ζ, ρ) is a mixture of elliptic and parabolic homogeneities

◮ K ∈ C∞(U \ 0), but K has hidden singularities along t = ρ = 0.
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Singular Radon transforms

Rv(ζ) =

∫

Ωζ

K(ζ, η)v(η)dσΩζ
(η)

◮ Group Fourier transform proof by Geller-Stein

◮ Analogue of the Hilbert transforms along curves introduced by
Nagel-Riviere-Wainger

◮ WF (R) = N∗(C) ∪∆: works of Guillemin, and especially Greenleaf-Uhlmann on
Gelfand’s problem, namely to identify family of curves that suffice to invert the
X -ray transform along curves.

◮ Most general version of Lp boundedness by Christ-Nagel-Stein-Wainger
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◮ If C = {ϕ1(x , y) = · · · = ϕℓ(x , y) = 0} locally, then

δC(x , y) =

∫

e i
∑ℓ

k=1 θkϕk (x,y)a(x , y , θ)dθ,

so R is a Fourier integral operator with Lagrangian
Λ = N∗(C) ⊂ T∗(X ) × T∗(Y ).

◮ General theory of Hörmander: if Λ is a local graph over T∗(X ) (equivalently,
over T∗(Y )), then R is smoothing of order (n − ℓ)/2 = dimCx/2.

◮ The local graph condition can be written down explicitly as, ∀θ ∈ Rℓ \ 0,

det

(

0 dyϕj

dxϕk d2
xy

∑ℓ
m=1 θmϕm(x , y)

)

6= 0.

◮ In general, R is smoothing of order 1
2
(dimCx − dimKer dπX ), with πX the

projection πX : T∗(X × Y ) → T∗(X ).
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δ = (n − 1)/2.
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theorem shows only that R is smoothing of order δ = 0.
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n, and Cx is the translate to x of a submanifold V

passing through the origin. Then the order of smoothing of R is the rate of decay of
the Fourier transform of the Dirac measure on V ,

|δ̂V (ξ)| ≤ C |ξ|−δ

◮ When V is a hypersurface, the graph condition holds when the Gaussian
curvature of V is not 0. The Radon transform R is then smoothing of order
δ = (n − 1)/2.

◮ When V is a curve, the graph condition cannot hold if dimX ≥ 3. Hörmander’s
theorem shows only that R is smoothing of order δ = 0.

◮ When V is a curve with torsion, the van der Corput lemma shows that R is
smoothing of order δ = 1/n.

◮ Higher codimension lead to higher order degeneracies, which are beyond the
scope of the standard method of stationary phase, and the corresponding
conditions on second order derivatives.
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j=1 ωjxj(t), we can formulate the following

Analytic questions

◮ Given Φω(t), what is the decay rate Cω |λ|−δω of the above oscillatory integral
with phase Φω(t) ?

◮ When are δω and Cω semicontinuous (“stable”) as ω varies ?

Geometric questions

◮ Given n = dimX , d = dimV , what are the best possible orders δ(n, d) of
smoothing ? (e.g., δ(n, n − 1) = (n − 1)/2, δ(n, 1) = 1/n)

◮ What are the geometric conditions on V which guarantee this best possible
order of smoothing ?



Multiplicities or Milnor numbers
Intuitively, smoothing should require the map V × · · · ×V → x1 + · · ·+ xN ∈ R

n to be
locally surjective for N large enough. This implies that no direction ø ∈ R

n is
orthogonal to V at N points. This suggests a measure µ of (higher-order) curvature
of V is the maximum number of points admitting a given direction among its normals.
Set then, for f ∈ Cω, and a an isolated critical point of f ,

µ = dimA(a)/I[∂1f , · · · , ∂d f ]

with A(a) the space of germs of analytic functions at a, and I[∂1f , · · · , ∂d f ] the
ideal generated by the partial derivatives of f at a. We say that V has non-vanishing
µ-curvature if ∀ω ∈ Rn \ 0, the phase Φω(t) has multiplicity at most µ at any critical
point. (Note that µ = 1 for a hypersurface and µ = n for a curve correspond
respectively to non-vanishing Gaussian curvature and non-vanishing torsion).
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◮ This reduces to (n − 1)/2 for hypersurfaces with non-vanishing curvature, and
1/n for curves with torsion.

◮ For general d, µ provides a non-linear interpolation between these extreme cases.
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◮ A naive conjecture for the optimal order of smoothing for Radon transforms
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◮ This reduces to (n − 1)/2 for hypersurfaces with non-vanishing curvature, and
1/n for curves with torsion.

◮ For general d, µ provides a non-linear interpolation between these extreme cases.

◮ The case d = 2 can be proved (P.-Stein, with a loss of ǫ derivatives, ǫ arbitrarily
small), using results of Varchenko, Karpushkin, and Kushnirenko.
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Let Φ(t) be a smooth real-valued function on [a,b]. If |Φ(k)(t)| ≥ 1 then
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− 1

k

if k ≥ 2, or k = 1 and Φ′(t) is monotone. Here Ck is a constant depending only on k.
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Varchenko’s theorem

◮ Let Φ(t) be a real-valued function on Rd with 0 as a critical point. The Newton
diagram of Φ is the convex hull of the upper quadrants in Rd with vertices at
those k = (k1, · · · , kd ) with the monomial tk appearing in the Taylor expansion
of Φ. The Newton distance α is defined by the condition that (α−1, · · · , α−1)
be the intersection of the line k1 = · · · = kd with a face of the Newton diagram.
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◮ For each face γ of the Newton diagram, let Pγ be the polynomial in the Taylor
expansion of Φ with monomials in the face γ. Assume dPγ 6= 0 in R

d \ 0. Then

|

∫

e iλΦ(t)χ(t)dt| ≤ C |λ|−α(log |λ|)β .

Stability theorem of Karpushkin
Let Φ be a Cω function with

∫

|t|<r
|Φ(t)|−δ < ∞ for some δ > 0, d = 2. Then there

exists 0 < s < r and ǫ > 0 so that for all Cω Ψ with ‖Φ−Ψ‖C0(|t|<r,t∈C2) < ǫ,
∫

|t|<s

|Ψ|−δ < ∞
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coordinate dependent. The equality

δ = α

can only hold generically. It is very useful to have criteria for when it holds.
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series. Define the “clustering Ξ” to be the number of elements in the largest
cluster of roots, where a cluster of roots is an equivalence class of roots, with
rj ∼ rk if |rj − rk | · |rj |

−1 → 0. The criterion for adapted coordinate systems is

Ξ ≤ α−1

and such coordinate systems always exist (P.-Stein-Sturm; also simpler and
self-contained proof of the stability theorem of Karpushkin).

◮ Extensions to C∞ phases and other constructions have been given by
Greenblatt, Ikromov-Müller, Ikromov-Kempe-Müller, and others.

The recent work of Collins-Greenleaf-Pramanik

◮ In general dimension d, for a given non-constant Cω function Φ, there exists a
finite collection C of coordinate transformations, so that if α(F ) denotes the
Newton distance in the coordinate system F ∈ F , we have

δ = infF∈C α(F ).

◮ The construction of the class C is actually algorithmic.
◮ Criteria for whether a specific coordinate system in C is adapted can be

formulated in terms of projections onto diagrams in 2 variables, and using the
2-dimensional criteria formulated above.



Estimates for Sublevel Sets

It is not difficult to see that the decay rate of oscillatory integrals with phase Φ is
essentially the same as the growth rate of the volume of its level sets

|{t ∈ B; |Φ(t)| ≤ M}| ≤ C Mδ

Stable estimates for oscillatory integrals correspond to volume estimates with bounds
C uniform in Φ. In fact, certain even stronger bounds are known, which depend only
on lower bounds for certain derivatives of Φ.
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Sublevel set estimates of Carbery-Christ-Wright
For any multi-index k, there exists δ > 0 and C , depending only on k and d, so that
the above estimate holds, for any function Φ satisfying the lower bound

|∂kΦ| ≥ 1 on B.

Sublevel set operators of P.-Stein-Sturm
For any given set β(1), · · · , β(K ) ∈ N

d \ 0, define the multilinear operator

WM(f1, · · · , fd ) =

∫

|∂β(j)
Φ|>1, 1≤j≤K

f1(x1) · · · fd(xd ) dx1 · · · dxd

Assume that Φ is a polynomial of degree m. Then there exists a constant C

depending only β(1), · · · , β(K ) ∈ Nd \ 0, so that

|WM(f1, · · · , fd )| ≤ C M
1
d
α logd−2(2 +

1

M
)

d
∏

i=1

‖fi‖
L

d
d−1

where α is the Newton distance for the diagram with vertices at β(j), 1 ≤ j ≤ K .



The new estimates of Gressman

◮ Define inductively the classes Lκ,ρ of operators by
L1,(0,··· ,0) consists of the identity;
Lκ,ρ consists of operators of the form

LΦ = det





∂ti1 L1Φ · · · ∂ti1 LnΦ

· · ·
∂tin L1Φ · · · ∂tin LnΦ





Here Lp ∈ Lκp ,ρp , κ = κ1 + · · ·+ κn, ρ = ρ1 + · · ·+ ρp + (1, · · · , 1, 0, · · · , 0),
the 1 occurring at ip .

◮ If Φ ∈ Cω(B), and for any closed set D ⊂ B, there exists a constant C so that

|{t ∈ D; |Φ(t)| ≤ M}| ≤ C M
α

|β|+1−α (inft∈D |LΦ|)
− 1

|β|+1−α

For Pfaffian functions Φ, C depends only on d, L, and the Pfaffian type of Φ.

◮ The proof makes use of works of Khovanskii and Gabrielov.



Degenerate Oscillatory Integral Operators

Low order of degeneracies

◮ Lagrangians with two-sided Whitney folds: smoothing with loss of 1
6
derivatives

(Melrose-Taylor)
◮ Lagrangians with one-sided Whitney fold: smoothing with loss of 1

4
derivatives

(Greenleaf-Uhlmann)
◮ Lagrangians with two-sided cusps: loss of 1

4
(Comech-Cuccagna,

Greenleaf-Seeger)
◮ Radon transforms and finite-type conditions in the plane: Seeger



Degenerate Oscillatory Integral Operators

Low order of degeneracies

◮ Lagrangians with two-sided Whitney folds: smoothing with loss of 1
6
derivatives

(Melrose-Taylor)
◮ Lagrangians with one-sided Whitney fold: smoothing with loss of 1

4
derivatives

(Greenleaf-Uhlmann)
◮ Lagrangians with two-sided cusps: loss of 1

4
(Comech-Cuccagna,

Greenleaf-Seeger)
◮ Radon transforms and finite-type conditions in the plane: Seeger

Arbitrary degeneracies in 1 + 1 dimensions

◮ (P.-Stein) Let Φ(x , y) be a real-analytic phase function in 2 dimensions. Then
the oscillatory integral operator Tλ defined by

Tf (x) =

∫

R

e iλΦ(x,y)χ(x , y)f (y)dy

for χ ∈ C∞
0 (R2) with sufficiently small support near 0, is bounded on L2(R)

with norm

‖T‖ ≤ C |λ|−
1
2
δ

where δ is the reduced Newton distance of Φ at 0
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Arbitrary degeneracies in 1 + 1 dimensions

◮ (P.-Stein) Let Φ(x , y) be a real-analytic phase function in 2 dimensions. Then
the oscillatory integral operator Tλ defined by

Tf (x) =

∫

R

e iλΦ(x,y)χ(x , y)f (y)dy

for χ ∈ C∞
0 (R2) with sufficiently small support near 0, is bounded on L2(R)

with norm

‖T‖ ≤ C |λ|−
1
2
δ

where δ is the reduced Newton distance of Φ at 0
◮ Extensions to C∞ phases were obtained by Rychkov, Greenblatt. A simpler

proof for polynomial phases was given later by P.-Stein-Sturm, using sublevel set
multilinear functionals, and the Hardy-Littlewood maximal function.



Damped oscillatory integral operators

◮ (P.-Stein) Let Φ(x , y) and χ(x , y) be as previously. Then the damped oscillatory
integral operator

Df (x) =

∫

R

e iλΦ(x,y)|Φ′′
xy (x , y)|

1
2 χ(x , y)f (y)dy

is bounded on L2(R) with norm

‖D‖ ≤ C |λ|−
1
2

◮ Earlier works on damped operators are in Sogge-Stein, Cowling-Disney-Mauceri
-Müller, and P.-Stein, where they are used for the study of Lp − Lq smoothing.
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‖D‖ ≤ C |λ|−
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◮ Earlier works on damped operators are in Sogge-Stein, Cowling-Disney-Mauceri
-Müller, and P.-Stein, where they are used for the study of Lp − Lq smoothing.

Related non-oscillating operator
(P.-Stein) Let E be the following operator, where I is a small interval around 0,

Ef (x) =

∫

I

|Φ(x , y)|−µf (y) dy

Then E is a bounded operator on L2(R) for

µ <
1

2
δ0

where δ0 is the Newton distance for Φ at 0. It is still bounded on L2(R) when
µ = 1

2
δ0, except possibly when the main face reduces to a single vertex, or is parallel

to one of the axes, or to the line p + q = 0.



The general strategy: “operator van der Corput”

◮ Decompose the set {Φ′′
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′′
xy | ∼ 2−k} with

corresponding partition χk(x , y) and decomposition T =
∑

k Tk .
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with C depending only on A and the degree of Φ(x , y).



The general strategy: “operator van der Corput”

◮ Decompose the set {Φ′′
xy 6= 0} into {Φ′′

xy 6= 0} = ∪k{|Φ
′′
xy | ∼ 2−k} with

corresponding partition χk(x , y) and decomposition T =
∑

k Tk .
◮ Establish an “oscillatory estimate” and a “size estimate”

‖Tk‖ ≤ C (2−k |λ|)−
1
2

‖Tk‖ ≤ (IkJk)
1
2

where Ik and Jk are the widths along the x and y axes of the set {|Φ′′
xy | ∼ 2−k}.

◮ Resum in k, exploiting the better of the oscillatory or size estimate.

The key difficulty
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xy | ∼ 2−k} are usually very complicated geometrically, and the

partition χk(x , y) necessarily complicated also. It is essential that the oscillatory
estimate be uniform in χk . and this requires very precise versions of the
oscillatory integral estimates.

◮ Curved Box Lemma: Let a curved box B be a set of the form

B = {(x , y);φ(x) < y < φ(x) + δ, a < x < b}

for some monotone function φ(x). Assume that the cut-off function satisfies
|∂n

yχ(x , y)| ≤ δ−n, and that Φ′′
xy is a polynomial satisfying µ ≤ |Φ′′

xy | ≤ Aµ on
B. Then the corresponding operator T satisfies

‖T‖ ≤ C(λµ)−
1
2

with C depending only on A and the degree of Φ(x , y).
◮ Curved Trapezoid Lemma: requires Hardy-Littlewood maximal function

(P.-Stein-Sturm)
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Further Developments

Works of Kempe-Ikromov-Müller
Lp boundedness of maximal Radon transforms for smooth hypersurfaces in R

3,
p > h(S), where h(S) is the supremum over Newton distances. Applications to
conjectures of Stein, Iosevich-Sawyer, and to restriction theorems.

Works of Tang, Greenleaf-Pramanik-Tang, Gressman: Higher Dimensions

◮ Tang’s result: Let Φ(x , z) =
∑m−1

j=1 Pj (x)z
m−j be a homogeneous polynomial of

degree m in R
2 × R. Assume that the first and the last non-vanishing

polynomials Pjmin
and Pjmax are non-degenerate (dP(x) 6= 0 for x 6= 0), and that

jmin ≤ 2m
3

≤ jmax . Then for m ≥ 4,

‖T‖ ≤ C |λ|−
3
2m .



Further Developments

Works of Kempe-Ikromov-Müller
Lp boundedness of maximal Radon transforms for smooth hypersurfaces in R

3,
p > h(S), where h(S) is the supremum over Newton distances. Applications to
conjectures of Stein, Iosevich-Sawyer, and to restriction theorems.

Works of Tang, Greenleaf-Pramanik-Tang, Gressman: Higher Dimensions

◮ Tang’s result: Let Φ(x , z) =
∑m−1

j=1 Pj (x)z
m−j be a homogeneous polynomial of

degree m in R
2 × R. Assume that the first and the last non-vanishing

polynomials Pjmin
and Pjmax are non-degenerate (dP(x) 6= 0 for x 6= 0), and that

jmin ≤ 2m
3

≤ jmax . Then for m ≥ 4,

‖T‖ ≤ C |λ|−
3
2m .

◮ Greenleaf-Pramanik-Tang’s result: Let Φ(x , z) be a homogeneous polynomial of
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2 ≤ m < nX + nY .
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◮ Cubic phases: Greenleaf-Pramanik-Tang (nX = nY = 2); also Gressman.
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◮ The one-dimensional model: let Φ(x) be a monic polynomial of degree N in R,
and let rj ∈ C, 1 ≤ j ≤ N be its roots. Then there exists constant CN ,
depending only on N, so that

|{x ∈ R; |Φ(x)| < M}| ≤ CN max1≤j≤NminS∋j

( M
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k /∈S |rk − rj |

)
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where S ranges over all subsets of {1, 2, · · · ,N} which contain j , and |S|
denotes the number of elements in S.
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◮ The one-dimensional model: let Φ(x) be a monic polynomial of degree N in R,
and let rj ∈ C, 1 ≤ j ≤ N be its roots. Then there exists constant CN ,
depending only on N, so that

|{x ∈ R; |Φ(x)| < M}| ≤ CN max1≤j≤NminS∋j

( M
∏

k /∈S |rk − rj |

)
1

|S|

where S ranges over all subsets of {1, 2, · · · ,N} which contain j , and |S|
denotes the number of elements in S.

◮ Can this lead to a geometry on the space of phase functions, which can help
identify compact sets within the subspace of phase functions with s specific
volume growth rate ?


