# SINGULAR OSCILLATORY INTEGRAL OPERATORS

D.H. Phong Columbia University

Conference in honor of Elias M. Stein Princeton University, May 16-21, 2011

May 16, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- ◆ □ ▶ → 個 ▶ → 差 ▶ → 差 → のへぐ

1. Reminiscences about the 70's

- 1. Reminiscences about the 70's
- 2. Generalized Radon transforms

- 1. Reminiscences about the 70's
- 2. Generalized Radon transforms
  - The framework of Fourier integral operators

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

- 1. Reminiscences about the 70's
- 2. Generalized Radon transforms
  - The framework of Fourier integral operators

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Dirac measures on subvarieties

- 1. Reminiscences about the 70's
- 2. Generalized Radon transforms
  - The framework of Fourier integral operators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Dirac measures on subvarieties
- Some analytic and geometric questions

- 1. Reminiscences about the 70's
- 2. Generalized Radon transforms
  - The framework of Fourier integral operators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Dirac measures on subvarieties
- Some analytic and geometric questions
- 3. Some partial answers

- 1. Reminiscences about the 70's
- 2. Generalized Radon transforms
  - The framework of Fourier integral operators
  - Dirac measures on subvarieties
  - Some analytic and geometric questions
- 3. Some partial answers
  - Estimates for degenerate oscillatory integrals

▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ■ のの⊙

- 1. Reminiscences about the 70's
- 2. Generalized Radon transforms
  - The framework of Fourier integral operators
  - Dirac measures on subvarieties
  - Some analytic and geometric questions

#### 3. Some partial answers

Estimates for degenerate oscillatory integrals

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Estimates for sublevel sets

- 1. Reminiscences about the 70's
- 2. Generalized Radon transforms
  - The framework of Fourier integral operators
  - Dirac measures on subvarieties
  - Some analytic and geometric questions

### 3. Some partial answers

Estimates for degenerate oscillatory integrals

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Estimates for sublevel sets
- Degenerate oscillatory integral operators

- 1. Reminiscences about the 70's
- 2. Generalized Radon transforms
  - The framework of Fourier integral operators
  - Dirac measures on subvarieties
  - Some analytic and geometric questions

#### 3. Some partial answers

Estimates for degenerate oscillatory integrals

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Estimates for sublevel sets
- Degenerate oscillatory integral operators
- 4. Jugendtraum

#### Pseudo-differential operators

- Calculus of Kohn-Nirenberg, inspired by Kohn's  $L^2$  solution of the  $\bar{\partial}$  and  $\bar{\partial}_b$  problems; subelliptic estimates, weakly pseudoconvex domains
- Exotic classes  $S^m_{\rho,\delta}$  of Hörmander and  $S^{M,m}_{\Phi,\phi}$  of Beals-Fefferman
- The almost-orthogonality lemma of Cotlar-Stein, L<sup>2</sup> boundedness theorem of Calderón-Vaillancourt

#### Pseudo-differential operators

- Calculus of Kohn-Nirenberg, inspired by Kohn's  $L^2$  solution of the  $\bar{\partial}$  and  $\bar{\partial}_b$  problems; subelliptic estimates, weakly pseudoconvex domains
- Exotic classes  $S^m_{\rho,\delta}$  of Hörmander and  $S^{M,m}_{\Phi,\phi}$  of Beals-Fefferman
- The almost-orthogonality lemma of Cotlar-Stein, L<sup>2</sup> boundedness theorem of Calderón-Vaillancourt

### Fourier integral operators

- Early ideas of Maslov and Egorov
- Theory of Hörmander and Duistermaat-Hörmander for real phases
- Complex phases of Melin-Sjöstrand

#### Pseudo-differential operators

- Calculus of Kohn-Nirenberg, inspired by Kohn's  $L^2$  solution of the  $\bar{\partial}$  and  $\bar{\partial}_b$  problems; subelliptic estimates, weakly pseudoconvex domains
- Exotic classes  $S^m_{\rho,\delta}$  of Hörmander and  $S^{M,m}_{\Phi,\phi}$  of Beals-Fefferman
- The almost-orthogonality lemma of Cotlar-Stein, L<sup>2</sup> boundedness theorem of Calderón-Vaillancourt

### Fourier integral operators

- Early ideas of Maslov and Egorov
- Theory of Hörmander and Duistermaat-Hörmander for real phases
- Complex phases of Melin-Sjöstrand

### New singular integral operators

- Folland-Stein's fundamental solution for  $\bar{\partial}_b$
- Greiner-Stein's  $L^p$  estimates for the  $\bar{\partial}$  Neumann problem
- Rothschild-Stein's fundamental solution for  $\sum_{i=1}^{N} X_i^2 + iX_0$
- Fefferman's expansion for the Bergman kernel, subsequently simplified by Kerzman-Stein, and refined by Boutet de Monvel-Sjöstrand.

### Green's function for the $\bar{\partial}$ -Neumann problem

The model case is the Siegel upper half-space  $U = \{(z, z_{n+1} \in \mathbb{C}^{n+1}; \text{ Im } z_{n+1} > |z|^2\}$ , which can be identified with  $H_n \times \mathbb{R}_+$  via  $(z, z_{n+1}) \leftrightarrow (\zeta, \rho), \zeta = (z, t), t = \text{Re } z_{n+1}, \rho = \text{Im } z_{n+1} - |z|^2$ . Here  $H_n$  is the Heisenberg group

 $H_n = \{ \mathbf{C}^n \times \mathbf{R}; (z, t) \cdot (z', t') = (z + z', t + t' + 2\operatorname{Im} z\overline{z}') \}.$ 

The  $\bar{\partial}$ -Neumann problem is the following boundary value problem

 $\Box u = f \quad \text{on} \quad H_n \times \mathbf{R}_+, \quad (\partial_\rho + i\partial_t)u = 0 \quad \text{when } \rho = 0.$ 

#### Green's function for the $\bar{\partial}$ -Neumann problem

The model case is the Siegel upper half-space  $U = \{(z, z_{n+1} \in \mathbb{C}^{n+1}; \text{ Im } z_{n+1} > |z|^2\}$ , which can be identified with  $H_n \times \mathbb{R}_+$  via  $(z, z_{n+1}) \leftrightarrow (\zeta, \rho), \zeta = (z, t), t = \text{Re } z_{n+1}, \rho = \text{Im } z_{n+1} - |z|^2$ . Here  $H_n$  is the Heisenberg group

 $H_n = \{ \mathbf{C}^n \times \mathbf{R}; (z,t) \cdot (z',t') = (z+z',t+t'+2\operatorname{Im} z\overline{z}') \}.$ 

The  $\bar{\partial}$ -Neumann problem is the following boundary value problem

 $\Box u = f \quad \text{on} \quad H_n \times \mathbf{R}_+, \quad (\partial_\rho + i\partial_t)u = 0 \quad \text{when } \rho = 0.$ 

An explicit formula for the Green's function

$$u(\zeta,\rho) = \int_{\mathcal{H}_n \times \mathbf{R}_+} N(\zeta^{-1} \cdot \eta, |\rho - \mu|) f(\eta, \mu) - \int_{\mathcal{H}_n \times \mathbf{R}_+} K(\zeta^{-1} \cdot \eta, \rho + \mu) f(\eta, \mu)$$

where

$$N(\zeta, 
ho) \sim rac{1}{(2|z|^2+t^2+
ho^2)^n}, \qquad K(\zeta, 
ho) \sim rac{1}{(2|z|^2+t^2+
ho^2)^k(2|z|^2+
ho-it)^\ell}$$

A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A

#### Green's function for the $\bar{\partial}$ -Neumann problem

The model case is the Siegel upper half-space  $U = \{(z, z_{n+1} \in \mathbb{C}^{n+1}; \text{ Im } z_{n+1} > |z|^2\}$ , which can be identified with  $H_n \times \mathbb{R}_+$  via  $(z, z_{n+1}) \leftrightarrow (\zeta, \rho), \zeta = (z, t), t = \text{Re } z_{n+1}, \rho = \text{Im } z_{n+1} - |z|^2$ . Here  $H_n$  is the Heisenberg group

 $H_n = \{ \mathbf{C}^n \times \mathbf{R}; (z,t) \cdot (z',t') = (z+z',t+t'+2\operatorname{Im} z\overline{z}') \}.$ 

The  $\bar{\partial}$ -Neumann problem is the following boundary value problem

 $\Box u = f \quad \text{on} \quad H_n \times \mathbf{R}_+, \quad (\partial_\rho + i\partial_t)u = 0 \quad \text{when } \rho = 0.$ 

An explicit formula for the Green's function

$$u(\zeta,\rho) = \int_{H_n \times \mathbf{R}_+} N(\zeta^{-1} \cdot \eta, |\rho - \mu|) f(\eta, \mu) - \int_{H_n \times \mathbf{R}_+} K(\zeta^{-1} \cdot \eta, \rho + \mu) f(\eta, \mu)$$

where

$$N(\zeta, \rho) \sim rac{1}{(2|z|^2 + t^2 + 
ho^2)^n}, \qquad K(\zeta, 
ho) \sim rac{1}{(2|z|^2 + t^2 + 
ho^2)^k (2|z|^2 + 
ho - it)^\ell}$$

#### Key features of K

- K(ζ, ρ) is a mixture of elliptic and parabolic homogeneities
- ►  $K \in C^{\infty}(U \setminus 0)$ , but K has hidden singularities along  $t = \rho = 0$ .

### A distribution of hypersurfaces

$$\blacktriangleright \ \Omega_0 = \{(z,0); z \in \mathbf{C}\} \subset H_n$$

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 - のへぐ

$$\blacktriangleright \quad \Omega_{\zeta} = \zeta \cdot \Omega_0$$

#### A distribution of hypersurfaces

• 
$$\Omega_0 = \{(z,0); z \in \mathbf{C}\} \subset H_n$$
  
•  $\Omega_{\zeta} = \zeta \cdot \Omega_0$ 

Propagation of hidden singularities along  $\Omega_\zeta$ 

$$D^{2}u_{+}(\zeta,\rho) = \int_{0}^{\infty}\int_{-\infty}^{\infty}\left\{\int_{\Omega_{\zeta}}K_{\zeta,\eta}(z-w,\rho+\mu)T_{s}f(\eta,\mu)\,d\sigma_{\Omega_{\zeta}}(\eta)\right\}dsd\mu,$$

where  $\zeta = (z, t)$ ,  $\eta = (w, s)$ , and  $K_{\zeta,\eta}(w, \rho)$  is a Calderón-Zygmund kernel on  $\Omega_{\zeta}$ , with norm  $O((s^2 + \mu^2)^{-1})$ ,  $T_s v$  is a translation of v by s.

Singular Radon transforms

$$\mathsf{Rv}(\zeta) = \int_{\Omega_{\zeta}} \mathsf{K}(\zeta,\eta) \mathsf{v}(\eta) \mathsf{d}\sigma_{\Omega_{\zeta}}(\eta)$$

#### A distribution of hypersurfaces

•  $\Omega_0 = \{(z,0); z \in \mathbf{C}\} \subset H_n$ •  $\Omega_{\zeta} = \zeta \cdot \Omega_0$ 

Propagation of hidden singularities along  $\Omega_\zeta$ 

$$D^{2}u_{+}(\zeta,\rho) = \int_{0}^{\infty}\int_{-\infty}^{\infty}\left\{\int_{\Omega_{\zeta}}K_{\zeta,\eta}(z-w,\rho+\mu)T_{s}f(\eta,\mu)\,d\sigma_{\Omega_{\zeta}}(\eta)\right\}dsd\mu,$$

where  $\zeta = (z, t)$ ,  $\eta = (w, s)$ , and  $K_{\zeta,\eta}(w, \rho)$  is a Calderón-Zygmund kernel on  $\Omega_{\zeta}$ , with norm  $O((s^2 + \mu^2)^{-1})$ ,  $T_s v$  is a translation of v by s.

Singular Radon transforms

$$\mathsf{Rv}(\zeta) = \int_{\Omega_\zeta} \mathsf{K}(\zeta,\eta) \mathsf{v}(\eta) \mathsf{d}\sigma_{\Omega_\zeta}(\eta)$$

- Group Fourier transform proof by Geller-Stein
- Analogue of the Hilbert transforms along curves introduced by Nagel-Riviere-Wainger
- $WF(R) = N^*(\mathcal{C}) \cup \Delta$ : works of Guillemin, and especially Greenleaf-Uhlmann on Gelfand's problem, namely to identify family of curves that suffice to invert the X-ray transform along curves.
- ► Most general version of L<sup>p</sup> boundedness by Christ-Nagel-Stein-Wainger

# Generalized Radon transforms

Let X, Y be smooth manifolds, and  $C \subset X \times Y$  a smooth submanifold. Then a Dirac measure  $\delta_{\mathcal{C}}(x, y)$  supported on C defines a generalized Radon transform,

$$Rf(x) = \int_{C_x} \delta_C(x, y) f(y)$$

with  $C_x = \{y \in Y; (x, y) \in C\}.$ 



## Generalized Radon transforms

Let X, Y be smooth manifolds, and  $C \subset X \times Y$  a smooth submanifold. Then a Dirac measure  $\delta_{\mathcal{C}}(x, y)$  supported on C defines a generalized Radon transform,

$$Rf(x) = \int_{C_x} \delta_C(x, y) f(y)$$

with  $C_x = \{y \in Y; (x, y) \in C\}.$ 

The framework of Fourier integral operators

• If 
$$C = \{\varphi_1(x, y) = \cdots = \varphi_\ell(x, y) = 0\}$$
 locally, then

$$\delta_{\mathcal{C}}(x,y) = \int e^{i\sum_{k=1}^{\ell} heta_k \varphi_k(x,y)} a(x,y, heta) d heta,$$

so *R* is a Fourier integral operator with Lagrangian  $\Lambda = N^*(\mathcal{C}) \subset T^*(X) \times T^*(Y).$ 

## Generalized Radon transforms

Let X, Y be smooth manifolds, and  $C \subset X \times Y$  a smooth submanifold. Then a Dirac measure  $\delta_{\mathcal{C}}(x, y)$  supported on C defines a generalized Radon transform,

$$Rf(x) = \int_{C_x} \delta_C(x, y) f(y)$$

with  $C_x = \{y \in Y; (x, y) \in C\}.$ 

The framework of Fourier integral operators

• If 
$$C = \{\varphi_1(x, y) = \cdots = \varphi_\ell(x, y) = 0\}$$
 locally, then

$$\delta_{\mathcal{C}}(x,y) = \int e^{i\sum_{k=1}^{\ell} heta_k \varphi_k(x,y)} \mathsf{a}(x,y, heta) d heta,$$

so *R* is a Fourier integral operator with Lagrangian  $\Lambda = N^*(\mathcal{C}) \subset T^*(X) \times T^*(Y).$ 

- ▶ General theory of Hörmander: if  $\Lambda$  is a local graph over  $T^*(X)$  (equivalently, over  $T^*(Y)$ ), then R is smoothing of order  $(n \ell)/2 = \dim C_x/2$ .
- ▶ The local graph condition can be written down explicitly as,  $\forall \theta \in \mathbf{R}^{\ell} \setminus \mathbf{0}$ ,

$$\det \left(\begin{array}{cc} 0 & d_{y}\varphi_{j} \\ d_{x}\varphi_{k} & d_{xy}^{2}\sum_{m=1}^{\ell}\theta_{m}\varphi_{m}(x,y) \end{array}\right) \neq 0$$

▶ In general, *R* is smoothing of order  $\frac{1}{2}(\dim C_x - \dim \operatorname{Ker} d\pi_X)$ , with  $\pi_X$  the projection  $\pi_X : T^*(X \times Y) \to T^*(X)$ .

### Dirac measure of subvarieties

Consider the case  $X = Y = \mathbf{R}^n$ , and  $C_x$  is the translate to x of a submanifold V passing through the origin. Then the order of smoothing of R is the rate of decay of the Fourier transform of the Dirac measure on V,

 $|\hat{\delta}_V(\xi)| \leq C |\xi|^{-\delta}$ 

#### Dirac measure of subvarieties

Consider the case  $X = Y = \mathbf{R}^n$ , and  $C_x$  is the translate to x of a submanifold V passing through the origin. Then the order of smoothing of R is the rate of decay of the Fourier transform of the Dirac measure on V,

 $|\hat{\delta}_V(\xi)| \leq C |\xi|^{-\delta}$ 

- When V is a hypersurface, the graph condition holds when the Gaussian curvature of V is not 0. The Radon transform R is then smoothing of order  $\delta = (n-1)/2$ .
- ▶ When V is a curve, the graph condition cannot hold if dim  $X \ge 3$ . Hörmander's theorem shows only that R is smoothing of order  $\delta = 0$ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

• When V is a curve with torsion, the van der Corput lemma shows that R is smoothing of order  $\delta = 1/n$ .

#### Dirac measure of subvarieties

Consider the case  $X = Y = \mathbf{R}^n$ , and  $C_x$  is the translate to x of a submanifold V passing through the origin. Then the order of smoothing of R is the rate of decay of the Fourier transform of the Dirac measure on V,

 $|\hat{\delta}_V(\xi)| \leq C |\xi|^{-\delta}$ 

- When V is a hypersurface, the graph condition holds when the Gaussian curvature of V is not 0. The Radon transform R is then smoothing of order  $\delta = (n-1)/2$ .
- ▶ When V is a curve, the graph condition cannot hold if dim  $X \ge 3$ . Hörmander's theorem shows only that R is smoothing of order  $\delta = 0$ .
- When V is a curve with torsion, the van der Corput lemma shows that R is smoothing of order  $\delta = 1/n$ .
- Higher codimension lead to higher order degeneracies, which are beyond the scope of the standard method of stationary phase, and the corresponding conditions on second order derivatives.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

#### A closer look

Let  $\mathbf{R}^d 
i t 
ightarrow \mathsf{x}(t) \in \mathbf{R}^n$  be a local parametrization of V. Then

$$\hat{\delta}_V(\xi) = \int e^{i\sum_{j=1}^n \xi_j x_j(t)} \chi(t) dt$$

Setting  $\xi = \lambda \omega$ ,  $\lambda = |\xi|$ ,  $\omega \in S^{n-1}$ ,

$$\hat{\delta}_V(\xi) = \int e^{i\lambda\Phi_\omega(t)}\chi(t)dt$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where  $\Phi_{\omega}(t) = \sum_{j=1}^n \omega_j x_j(t)$ , we can formulate the following

#### A closer look

Let  $\mathbf{R}^d \ni t \to x(t) \in \mathbf{R}^n$  be a local parametrization of V. Then

$$\hat{\delta}_V(\xi) = \int \mathrm{e}^{i\sum_{j=1}^n \xi_j \mathsf{x}_j(t)} \chi(t) dt$$

Setting  $\xi = \lambda \omega$ ,  $\lambda = |\xi|$ ,  $\omega \in S^{n-1}$ ,

$$\hat{\delta}_V(\xi) = \int e^{i\lambda\Phi_\omega(t)}\chi(t)dt$$

where  $\Phi_{\omega}(t) = \sum_{j=1}^{n} \omega_j x_j(t)$ , we can formulate the following

#### Analytic questions

Given Φ<sub>ω</sub>(t), what is the decay rate C<sub>ω</sub>|λ|<sup>-δ<sub>ω</sub></sup> of the above oscillatory integral with phase Φ<sub>ω</sub>(t) ?

• When are  $\delta_{\omega}$  and  $C_{\omega}$  semicontinuous ("stable") as  $\omega$  varies ?

#### A closer look

Let  $\mathbf{R}^d \ni t \to x(t) \in \mathbf{R}^n$  be a local parametrization of V. Then

$$\hat{\delta}_V(\xi) = \int \mathrm{e}^{i\sum_{j=1}^n \xi_j \mathsf{x}_j(t)} \chi(t) dt$$

Setting  $\xi = \lambda \omega$ ,  $\lambda = |\xi|$ ,  $\omega \in S^{n-1}$ ,

$$\hat{\delta}_V(\xi) = \int e^{i\lambda\Phi_\omega(t)}\chi(t)dt$$

where  $\Phi_{\omega}(t) = \sum_{j=1}^{n} \omega_j x_j(t)$ , we can formulate the following

Analytic questions

- Given Φ<sub>ω</sub>(t), what is the decay rate C<sub>ω</sub>|λ|<sup>-δ<sub>ω</sub></sup> of the above oscillatory integral with phase Φ<sub>ω</sub>(t) ?
- When are  $\delta_{\omega}$  and  $C_{\omega}$  semicontinuous ("stable") as  $\omega$  varies ?

#### Geometric questions

- Given n = dim X, d = dim V, what are the best possible orders δ(n, d) of smoothing ? (e.g., δ(n, n − 1) = (n − 1)/2, δ(n, 1) = 1/n)
- What are the geometric conditions on V which guarantee this best possible order of smoothing ?

Intuitively, smoothing should require the map  $V \times \cdots \times V \to x_1 + \cdots + x_N \in \mathbf{R}^n$  to be locally surjective for N large enough. This implies that no direction  $\emptyset \in \mathbf{R}^n$  is orthogonal to V at N points. This suggests a measure  $\mu$  of (higher-order) curvature of V is the maximum number of points admitting a given direction among its normals. Set then, for  $f \in C^{\omega}$ , and a an isolated critical point of f,

 $\mu = \dim \mathcal{A}(\mathbf{a})/\mathcal{I}[\partial_1 f, \cdots, \partial_d f]$ 

with  $\mathcal{A}(a)$  the space of germs of analytic functions at a, and  $\mathcal{I}[\partial_1 f, \dots, \partial_d f]$  the ideal generated by the partial derivatives of f at a. We say that V has non-vanishing  $\mu$ -curvature if  $\forall \omega \in \mathbb{R}^n \setminus 0$ , the phase  $\Phi_{\omega}(t)$  has multiplicity at most  $\mu$  at any critical point. (Note that  $\mu = 1$  for a hypersurface and  $\mu = n$  for a curve correspond respectively to non-vanishing Gaussian curvature and non-vanishing torsion).

Intuitively, smoothing should require the map  $V \times \cdots \times V \to x_1 + \cdots + x_N \in \mathbb{R}^n$  to be locally surjective for N large enough. This implies that no direction  $\emptyset \in \mathbb{R}^n$  is orthogonal to V at N points. This suggests a measure  $\mu$  of (higher-order) curvature of V is the maximum number of points admitting a given direction among its normals. Set then, for  $f \in C^{\omega}$ , and a an isolated critical point of f,

### $\mu = \dim \mathcal{A}(\mathbf{a})/\mathcal{I}[\partial_1 f, \cdots, \partial_d f]$

with  $\mathcal{A}(a)$  the space of germs of analytic functions at a, and  $\mathcal{I}[\partial_1 f, \dots, \partial_d f]$  the ideal generated by the partial derivatives of f at a. We say that V has non-vanishing  $\mu$ -curvature if  $\forall \omega \in \mathbb{R}^n \setminus 0$ , the phase  $\Phi_{\omega}(t)$  has multiplicity at most  $\mu$  at any critical point. (Note that  $\mu = 1$  for a hypersurface and  $\mu = n$  for a curve correspond respectively to non-vanishing Gaussian curvature and non-vanishing torsion).

A naive conjecture for the optimal order of smoothing for Radon transforms defined by *d*-dimensional submanifolds with non-vanishing curvature is

$$\delta = \frac{d}{\mu^{\frac{1}{d}} + 1} \tag{0.1}$$

Intuitively, smoothing should require the map  $V \times \cdots \times V \to x_1 + \cdots + x_N \in \mathbf{R}^n$  to be locally surjective for N large enough. This implies that no direction  $\emptyset \in \mathbf{R}^n$  is orthogonal to V at N points. This suggests a measure  $\mu$  of (higher-order) curvature of V is the maximum number of points admitting a given direction among its normals. Set then, for  $f \in C^{\omega}$ , and a an isolated critical point of f,

### $\mu = \dim \mathcal{A}(\mathbf{a})/\mathcal{I}[\partial_1 f, \cdots, \partial_d f]$

with  $\mathcal{A}(a)$  the space of germs of analytic functions at a, and  $\mathcal{I}[\partial_1 f, \dots, \partial_d f]$  the ideal generated by the partial derivatives of f at a. We say that V has non-vanishing  $\mu$ -curvature if  $\forall \omega \in \mathbb{R}^n \setminus 0$ , the phase  $\Phi_{\omega}(t)$  has multiplicity at most  $\mu$  at any critical point. (Note that  $\mu = 1$  for a hypersurface and  $\mu = n$  for a curve correspond respectively to non-vanishing Gaussian curvature and non-vanishing torsion).

A naive conjecture for the optimal order of smoothing for Radon transforms defined by *d*-dimensional submanifolds with non-vanishing curvature is

$$\delta = \frac{d}{\mu^{\frac{1}{d}} + 1} \tag{0.1}$$

- This reduces to (n-1)/2 for hypersurfaces with non-vanishing curvature, and 1/n for curves with torsion.
- For general d,  $\mu$  provides a non-linear interpolation between these extreme cases.

Intuitively, smoothing should require the map  $V \times \cdots \times V \to x_1 + \cdots + x_N \in \mathbf{R}^n$  to be locally surjective for N large enough. This implies that no direction  $\emptyset \in \mathbf{R}^n$  is orthogonal to V at N points. This suggests a measure  $\mu$  of (higher-order) curvature of V is the maximum number of points admitting a given direction among its normals. Set then, for  $f \in C^{\omega}$ , and a an isolated critical point of f,

### $\mu = \dim \mathcal{A}(\mathbf{a})/\mathcal{I}[\partial_1 f, \cdots, \partial_d f]$

with  $\mathcal{A}(a)$  the space of germs of analytic functions at a, and  $\mathcal{I}[\partial_1 f, \dots, \partial_d f]$  the ideal generated by the partial derivatives of f at a. We say that V has non-vanishing  $\mu$ -curvature if  $\forall \omega \in \mathbb{R}^n \setminus 0$ , the phase  $\Phi_{\omega}(t)$  has multiplicity at most  $\mu$  at any critical point. (Note that  $\mu = 1$  for a hypersurface and  $\mu = n$  for a curve correspond respectively to non-vanishing Gaussian curvature and non-vanishing torsion).

A naive conjecture for the optimal order of smoothing for Radon transforms defined by *d*-dimensional submanifolds with non-vanishing curvature is

$$\delta = \frac{d}{\mu^{\frac{1}{d}} + 1} \tag{0.1}$$

- This reduces to (n-1)/2 for hypersurfaces with non-vanishing curvature, and 1/n for curves with torsion.
- For general d,  $\mu$  provides a non-linear interpolation between these extreme cases.
- ► The case d = 2 can be proved (P.-Stein, with a loss of  $\epsilon$  derivatives,  $\epsilon$  arbitrarily small), using results of Varchenko, Karpushkin, and Kushnirenko.

<□> <□> <□> <=> <=> <=> <=> <=> <=> <=> <=> <</p>

### The van der Corput lemma

Let  $\Phi(t)$  be a smooth real-valued function on [a, b]. If  $|\Phi^{(k)}(t)| \ge 1$  then

$$|\int_a^b e^{i\lambda\Phi(t)}dt| \leq C_k \, |\lambda|^{-rac{1}{k}}$$

if  $k \ge 2$ , or k = 1 and  $\Phi'(t)$  is monotone. Here  $C_k$  is a constant depending only on k.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### The van der Corput lemma

Let  $\Phi(t)$  be a smooth real-valued function on [a, b]. If  $|\Phi^{(k)}(t)| \ge 1$  then

 $|\int_a^b e^{i\lambda\Phi(t)}dt| \leq C_k |\lambda|^{-rac{1}{k}}$ 

if  $k \ge 2$ , or k = 1 and  $\Phi'(t)$  is monotone. Here  $C_k$  is a constant depending only on k.

#### Varchenko's theorem

- ▶ Let  $\Phi(t)$  be a real-valued function on  $\mathbb{R}^d$  with 0 as a critical point. The Newton diagram of  $\Phi$  is the convex hull of the upper quadrants in  $\mathbb{R}^d$  with vertices at those  $k = (k_1, \dots, k_d)$  with the monomial  $t^k$  appearing in the Taylor expansion of  $\Phi$ . The Newton distance  $\alpha$  is defined by the condition that  $(\alpha^{-1}, \dots, \alpha^{-1})$  be the intersection of the line  $k_1 = \dots = k_d$  with a face of the Newton diagram.
- For each face  $\gamma$  of the Newton diagram, let  $P_{\gamma}$  be the polynomial in the Taylor expansion of  $\Phi$  with monomials in the face  $\gamma$ . Assume  $dP_{\gamma} \neq 0$  in  $\mathbf{R}^d \setminus 0$ . Then

$$|\int e^{i\lambda\Phi(t)}\chi(t)dt|\leq C\,|\lambda|^{-lpha}(\log|\lambda|)^eta,$$

### The van der Corput lemma

Let  $\Phi(t)$  be a smooth real-valued function on [a, b]. If  $|\Phi^{(k)}(t)| \ge 1$  then

 $|\int_{a}^{b}e^{i\lambda\Phi(t)}dt|\leq C_{k}|\lambda|^{-rac{1}{k}}$ 

if  $k \ge 2$ , or k = 1 and  $\Phi'(t)$  is monotone. Here  $C_k$  is a constant depending only on k.

#### Varchenko's theorem

- ► Let  $\Phi(t)$  be a real-valued function on  $\mathbb{R}^d$  with 0 as a critical point. The Newton diagram of  $\Phi$  is the convex hull of the upper quadrants in  $\mathbb{R}^d$  with vertices at those  $k = (k_1, \dots, k_d)$  with the monomial  $t^k$  appearing in the Taylor expansion of  $\Phi$ . The Newton distance  $\alpha$  is defined by the condition that  $(\alpha^{-1}, \dots, \alpha^{-1})$  be the intersection of the line  $k_1 = \dots = k_d$  with a face of the Newton diagram.
- For each face  $\gamma$  of the Newton diagram, let  $P_{\gamma}$  be the polynomial in the Taylor expansion of  $\Phi$  with monomials in the face  $\gamma$ . Assume  $dP_{\gamma} \neq 0$  in  $\mathbf{R}^d \setminus 0$ . Then

$$|\int e^{i\lambda\Phi(t)}\chi(t)dt| \leq C |\lambda|^{-lpha} (\log|\lambda|)^{eta}.$$

#### Stability theorem of Karpushkin

Let  $\Phi$  be a  $C^{\omega}$  function with  $\int_{|t| < r} |\Phi(t)|^{-\delta} < \infty$  for some  $\delta > 0$ , d = 2. Then there exists 0 < s < r and  $\epsilon > 0$  so that for all  $C^{\omega} \Psi$  with  $\|\Phi - \Psi\|_{C^0(|t| < r, t \in \mathbf{C}^2)} < \epsilon$ ,

$$\int_{|t| < s} |\Psi|^{-\delta} < \infty$$

• The decay rate  $\delta$  is reparametrization invariant, while the Newton distance  $\alpha$  is coordinate dependent. The equality

 $\delta = \alpha$ 

can only hold generically. It is very useful to have criteria for when it holds.

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

• The decay rate  $\delta$  is reparametrization invariant, while the Newton distance  $\alpha$  is coordinate dependent. The equality

#### $\delta = \alpha$

can only hold generically. It is very useful to have criteria for when it holds.

▶ In dimension d = 2, roots  $r_j(x)$  of polynomials  $\Phi(x, y)$  are given by Puiseux series. Define the "clustering  $\Xi$ " to be the number of elements in the largest cluster of roots, where a cluster of roots is an equivalence class of roots, with  $r_j \sim r_k$  if  $|r_j - r_k| \cdot |r_j|^{-1} \rightarrow 0$ . The criterion for adapted coordinate systems is

### $\Xi \le \alpha^{-1}$

and such coordinate systems always exist (P.-Stein-Sturm; also simpler and self-contained proof of the stability theorem of Karpushkin).

• The decay rate  $\delta$  is reparametrization invariant, while the Newton distance  $\alpha$  is coordinate dependent. The equality

#### $\delta = \alpha$

can only hold generically. It is very useful to have criteria for when it holds.

▶ In dimension d = 2, roots  $r_j(x)$  of polynomials  $\Phi(x, y)$  are given by Puiseux series. Define the "clustering  $\Xi$ " to be the number of elements in the largest cluster of roots, where a cluster of roots is an equivalence class of roots, with  $r_j \sim r_k$  if  $|r_j - r_k| \cdot |r_j|^{-1} \rightarrow 0$ . The criterion for adapted coordinate systems is

### $\Xi \le \alpha^{-1}$

and such coordinate systems always exist (P.-Stein-Sturm; also simpler and self-contained proof of the stability theorem of Karpushkin).

► Extensions to C<sup>∞</sup> phases and other constructions have been given by Greenblatt, Ikromov-Müller, Ikromov-Kempe-Müller, and others.

• The decay rate  $\delta$  is reparametrization invariant, while the Newton distance  $\alpha$  is coordinate dependent. The equality

#### $\delta = \alpha$

can only hold generically. It is very useful to have criteria for when it holds.

▶ In dimension d = 2, roots  $r_j(x)$  of polynomials  $\Phi(x, y)$  are given by Puiseux series. Define the "clustering  $\Xi$ " to be the number of elements in the largest cluster of roots, where a cluster of roots is an equivalence class of roots, with  $r_j \sim r_k$  if  $|r_j - r_k| \cdot |r_j|^{-1} \rightarrow 0$ . The criterion for adapted coordinate systems is

### $\Xi \leq \alpha^{-1}$

and such coordinate systems always exist (P.-Stein-Sturm; also simpler and self-contained proof of the stability theorem of Karpushkin).

► Extensions to C<sup>∞</sup> phases and other constructions have been given by Greenblatt, Ikromov-Müller, Ikromov-Kempe-Müller, and others.

#### The recent work of Collins-Greenleaf-Pramanik

In general dimension d, for a given non-constant C<sup>ω</sup> function Φ, there exists a finite collection C of coordinate transformations, so that if α(F) denotes the Newton distance in the coordinate system F ∈ F, we have

### $\delta = \inf_{F \in \mathcal{C}} \alpha(F).$

- ▶ The construction of the class C is actually algorithmic.
- Criteria for whether a specific coordinate system in C is adapted can be formulated in terms of projections onto diagrams in 2 variables, and using the 2-dimensional criteria formulated above.

# Estimates for Sublevel Sets

It is not difficult to see that the decay rate of oscillatory integrals with phase  $\Phi$  is essentially the same as the growth rate of the volume of its level sets

```
|\{t \in B; |\Phi(t)| \leq M\}| \leq C M^{\delta}
```

Stable estimates for oscillatory integrals correspond to volume estimates with bounds C uniform in  $\Phi$ . In fact, certain even stronger bounds are known, which depend only on lower bounds for certain derivatives of  $\Phi$ .

# Estimates for Sublevel Sets

It is not difficult to see that the decay rate of oscillatory integrals with phase  $\Phi$  is essentially the same as the growth rate of the volume of its level sets

 $|\{t \in B; |\Phi(t)| \leq M\}| \leq C M^{\delta}$ 

Stable estimates for oscillatory integrals correspond to volume estimates with bounds C uniform in  $\Phi$ . In fact, certain even stronger bounds are known, which depend only on lower bounds for certain derivatives of  $\Phi$ .

Sublevel set estimates of Carbery-Christ-Wright

For any multi-index k, there exists  $\delta > 0$  and C, depending only on k and d, so that the above estimate holds, for any function  $\Phi$  satisfying the lower bound

 $|\partial^k \Phi| \ge 1$  on B.

# Estimates for Sublevel Sets

It is not difficult to see that the decay rate of oscillatory integrals with phase  $\Phi$  is essentially the same as the growth rate of the volume of its level sets

 $|\{t \in B; |\Phi(t)| \leq M\}| \leq C M^{\delta}$ 

Stable estimates for oscillatory integrals correspond to volume estimates with bounds C uniform in  $\Phi$ . In fact, certain even stronger bounds are known, which depend only on lower bounds for certain derivatives of  $\Phi$ .

### Sublevel set estimates of Carbery-Christ-Wright

For any multi-index k, there exists  $\delta > 0$  and C, depending only on k and d, so that the above estimate holds, for any function  $\Phi$  satisfying the lower bound

 $|\partial^k \Phi| \ge 1$  on B.

#### Sublevel set operators of P.-Stein-Sturm

For any given set  $\beta^{(1)}, \cdots, \beta^{(K)} \in \mathbf{N}^d \setminus 0$ , define the multilinear operator

$$W_{\mathcal{M}}(f_1,\cdots,f_d) = \int_{|\partial^{\beta^{(j)}}\Phi|>1, \ 1\leq j\leq K} f_1(x_1)\cdots f_d(x_d) \, dx_1\cdots dx_d$$

Assume that  $\Phi$  is a polynomial of degree *m*. Then there exists a constant *C* depending only  $\beta^{(1)}, \dots, \beta^{(K)} \in \mathbf{N}^d \setminus \mathbf{0}$ , so that

$$|W_M(f_1, \cdots, f_d)| \le C M^{\frac{1}{d} lpha} \log^{d-2} (2 + \frac{1}{M}) \prod_{i=1}^d \|f_i\|_{L^{\frac{d}{d-1}}}$$

where  $\alpha$  is the Newton distance for the diagram with vertices  $at \beta^{(j)}$ ,  $1 \leq j \leq \mathcal{K}$ .

#### The new estimates of Gressman

Define inductively the classes *L<sup>κ,ρ</sup>* of operators by *L<sup>1,(0,...,0)</sup>* consists of the identity; *L<sup>κ,ρ</sup>* consists of operators of the form

$$L\Phi = \det \begin{pmatrix} \partial_{t_{i_1}} L_1 \Phi & \cdots & \partial_{t_{i_1}} L_n \Phi \\ \cdot & \cdot & \cdot \\ \partial_{t_{i_n}} L_1 \Phi & \cdots & \partial_{t_{i_n}} L_n \Phi \end{pmatrix}$$

Here  $L_p \in \mathcal{L}^{\kappa_p, \rho_p}$ ,  $\kappa = \kappa_1 + \cdots + \kappa_n$ ,  $\rho = \rho_1 + \cdots + \rho_p + (1, \cdots, 1, 0, \cdots, 0)$ , the 1 occurring at  $i_p$ .

▶ If  $\Phi \in C^{\omega}(B)$ , and for any closed set  $D \subset B$ , there exists a constant C so that

$$|\{t \in D; |\Phi(t)| \le M\}| \le C M^{\frac{\alpha}{|\beta|+1-\alpha}} (\inf_{t \in D} |L\Phi|)^{-\frac{1}{|\beta|+1-\alpha}}$$

For Pfaffian functions  $\Phi$ , C depends only on d, L, and the Pfaffian type of  $\Phi$ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The proof makes use of works of Khovanskii and Gabrielov.

# Degenerate Oscillatory Integral Operators

### Low order of degeneracies

- Lagrangians with two-sided Whitney folds: smoothing with loss of <sup>1</sup>/<sub>6</sub> derivatives (Melrose-Taylor)
- Lagrangians with one-sided Whitney fold: smoothing with loss of <sup>1</sup>/<sub>4</sub> derivatives (Greenleaf-Uhlmann)

- Lagrangians with two-sided cusps: loss of <sup>1</sup>/<sub>4</sub> (Comech-Cuccagna, Greenleaf-Seeger)
- Radon transforms and finite-type conditions in the plane: Seeger

# Degenerate Oscillatory Integral Operators

### Low order of degeneracies

- Lagrangians with two-sided Whitney folds: smoothing with loss of <sup>1</sup>/<sub>6</sub> derivatives (Melrose-Taylor)
- Lagrangians with one-sided Whitney fold: smoothing with loss of <sup>1</sup>/<sub>4</sub> derivatives (Greenleaf-Uhlmann)
- Lagrangians with two-sided cusps: loss of <sup>1</sup>/<sub>4</sub> (Comech-Cuccagna, Greenleaf-Seeger)
- Radon transforms and finite-type conditions in the plane: Seeger

### Arbitrary degeneracies in $1+1\ {\rm dimensions}$

• (P.-Stein) Let  $\Phi(x, y)$  be a real-analytic phase function in 2 dimensions. Then the oscillatory integral operator  $T_{\lambda}$  defined by

$$Tf(x) = \int_{\mathbf{R}} e^{i\lambda\Phi(x,y)}\chi(x,y)f(y)dy$$

for  $\chi\in C_0^\infty({\bf R}^2)$  with sufficiently small support near 0, is bounded on  $L^2({\bf R})$  with norm

$$\|T\| \le C \, |\lambda|^{-\frac{1}{2}\delta}$$

where  $\delta$  is the reduced Newton distance of  $\Phi$  at 0

# Degenerate Oscillatory Integral Operators

### Low order of degeneracies

- Lagrangians with two-sided Whitney folds: smoothing with loss of <sup>1</sup>/<sub>6</sub> derivatives (Melrose-Taylor)
- Lagrangians with one-sided Whitney fold: smoothing with loss of <sup>1</sup>/<sub>4</sub> derivatives (Greenleaf-Uhlmann)
- Lagrangians with two-sided cusps: loss of <sup>1</sup>/<sub>4</sub> (Comech-Cuccagna, Greenleaf-Seeger)
- Radon transforms and finite-type conditions in the plane: Seeger

### Arbitrary degeneracies in $1+1\ {\rm dimensions}$

• (P.-Stein) Let  $\Phi(x, y)$  be a real-analytic phase function in 2 dimensions. Then the oscillatory integral operator  $T_{\lambda}$  defined by

$$Tf(x) = \int_{\mathbf{R}} e^{i\lambda\Phi(x,y)}\chi(x,y)f(y)dy$$

for  $\chi\in C_0^\infty({\bf R}^2)$  with sufficiently small support near 0, is bounded on  $L^2({\bf R})$  with norm

## $\|T\| \leq C \, |\lambda|^{-\frac{1}{2}\delta}$

where  $\delta$  is the reduced Newton distance of  $\Phi$  at 0

Extensions to C<sup>∞</sup> phases were obtained by Rychkov, Greenblatt. A simpler proof for polynomial phases was given later by P.-Stein-Sturm, using sublevel set multilinear functionals, and the Hardy-Littlewood maximal function.

### Damped oscillatory integral operators

• (P.-Stein) Let  $\Phi(x, y)$  and  $\chi(x, y)$  be as previously. Then the damped oscillatory integral operator

$$Df(x) = \int_{\mathbf{R}} e^{i\lambda\Phi(x,y)} |\Phi_{xy}^{\prime\prime}(x,y)|^{\frac{1}{2}} \chi(x,y) f(y) dy$$

is bounded on  $L^2(\mathbf{R})$  with norm

## $\|D\| \leq C \, |\lambda|^{-\frac{1}{2}}$

Earlier works on damped operators are in Sogge-Stein, Cowling-Disney-Mauceri -Müller, and P.-Stein, where they are used for the study of L<sup>p</sup> - L<sup>q</sup> smoothing.

#### Damped oscillatory integral operators

• (P.-Stein) Let  $\Phi(x, y)$  and  $\chi(x, y)$  be as previously. Then the damped oscillatory integral operator

$$Df(x) = \int_{\mathbf{R}} e^{i\lambda\Phi(x,y)} |\Phi_{xy}^{\prime\prime}(x,y)|^{\frac{1}{2}} \chi(x,y) f(y) dy$$

is bounded on  $L^2(\mathbf{R})$  with norm

## $\|D\| \leq C \, |\lambda|^{-\frac{1}{2}}$

Earlier works on damped operators are in Sogge-Stein, Cowling-Disney-Mauceri -Müller, and P.-Stein, where they are used for the study of L<sup>p</sup> - L<sup>q</sup> smoothing.

#### Related non-oscillating operator

(P.-Stein) Let E be the following operator, where I is a small interval around 0,

$$Ef(x) = \int_I |\Phi(x,y)|^{-\mu} f(y) \, dy$$

Then E is a bounded operator on  $L^2(\mathbf{R})$  for

$$\mu < \frac{1}{2}\delta_0$$

where  $\delta_0$  is the Newton distance for  $\Phi$  at 0. It is still bounded on  $L^2(\mathbf{R})$  when  $\mu = \frac{1}{2}\delta_0$ , except possibly when the main face reduces to a single vertex, or is parallel to one of the axes, or to the line p + q = 0.

► Decompose the set  $\{\Phi_{xy}'' \neq 0\}$  into  $\{\Phi_{xy}'' \neq 0\} = \bigcup_k \{|\Phi_{xy}''| \sim 2^{-k}\}$  with corresponding partition  $\chi_k(x, y)$  and decomposition  $T = \sum_k T_k$ .

- ▶ Decompose the set  $\{\Phi'_{xy} \neq 0\}$  into  $\{\Phi'_{xy} \neq 0\} = \bigcup_k \{|\Phi'_{xy}| \sim 2^{-k}\}$  with corresponding partition  $\chi_k(x, y)$  and decomposition  $T = \sum_k T_k$ .
- Establish an "oscillatory estimate" and a "size estimate"

```
\|T_k\| \le C (2^{-k}|\lambda|)^{-\frac{1}{2}} \\ \|T_k\| \le (I_k J_k)^{\frac{1}{2}}
```

where  $I_k$  and  $J_k$  are the widths along the x and y axes of the set  $\{|\Phi_{xy}''| \sim 2^{-k}\}$ .

- ▶ Decompose the set  $\{\Phi'_{xy} \neq 0\}$  into  $\{\Phi'_{xy} \neq 0\} = \bigcup_k \{|\Phi'_{xy}| \sim 2^{-k}\}$  with corresponding partition  $\chi_k(x, y)$  and decomposition  $T = \sum_k T_k$ .
- Establish an "oscillatory estimate" and a "size estimate"

```
\|T_k\| \le C (2^{-k}|\lambda|)^{-\frac{1}{2}} 
\|T_k\| \le (I_k J_k)^{\frac{1}{2}}
```

where  $I_k$  and  $J_k$  are the widths along the x and y axes of the set  $\{|\Phi_{xy}''| \sim 2^{-k}\}$ . Resum in k, exploiting the better of the oscillatory or size estimate.

- ▶ Decompose the set  $\{\Phi'_{xy} \neq 0\}$  into  $\{\Phi'_{xy} \neq 0\} = \bigcup_k \{|\Phi'_{xy}| \sim 2^{-k}\}$  with corresponding partition  $\chi_k(x, y)$  and decomposition  $T = \sum_k T_k$ .
- Establish an "oscillatory estimate" and a "size estimate"

```
\|T_k\| \le C (2^{-k}|\lambda|)^{-\frac{1}{2}} 
\|T_k\| \le (I_k J_k)^{\frac{1}{2}}
```

where  $I_k$  and  $J_k$  are the widths along the x and y axes of the set  $\{|\Phi_{xy}''| \sim 2^{-k}\}$ .

Resum in k, exploiting the better of the oscillatory or size estimate.

### The key difficulty

The sets {|Φ'<sub>xy</sub>| ~ 2<sup>-k</sup>} are usually very complicated geometrically, and the partition χ<sub>k</sub>(x, y) necessarily complicated also. It is essential that the oscillatory estimate be uniform in χ<sub>k</sub>. and this requires very precise versions of the oscillatory integral estimates.

- ▶ Decompose the set  $\{\Phi'_{xy} \neq 0\}$  into  $\{\Phi'_{xy} \neq 0\} = \bigcup_k \{|\Phi'_{xy}| \sim 2^{-k}\}$  with corresponding partition  $\chi_k(x, y)$  and decomposition  $T = \sum_k T_k$ .
- Establish an "oscillatory estimate" and a "size estimate"

```
\|T_k\| \le C (2^{-k}|\lambda|)^{-\frac{1}{2}} 
\|T_k\| \le (I_k J_k)^{\frac{1}{2}}
```

where  $I_k$  and  $J_k$  are the widths along the x and y axes of the set  $\{|\Phi_{xy}''| \sim 2^{-k}\}$ .

Resum in k, exploiting the better of the oscillatory or size estimate.

### The key difficulty

- The sets {|Φ''<sub>xy</sub>| ~ 2<sup>-k</sup>} are usually very complicated geometrically, and the partition χ<sub>k</sub>(x, y) necessarily complicated also. It is essential that the oscillatory estimate be uniform in χ<sub>k</sub>. and this requires very precise versions of the oscillatory integral estimates.
- Curved Box Lemma: Let a curved box  $\mathcal{B}$  be a set of the form

 $\mathcal{B} = \{ (x, y); \phi(x) < y < \phi(x) + \delta, \ a < x < b \}$ 

for some monotone function  $\phi(x)$ . Assume that the cut-off function satisfies  $|\partial_y^n \chi(x,y)| \leq \delta^{-n}$ , and that  $\Phi_{xy}''$  is a polynomial satisfying  $\mu \leq |\Phi_{xy}''| \leq A\mu$  on  $\mathcal{B}$ . Then the corresponding operator T satisfies

$$\|T\| \leq C(\lambda\mu)^{-\frac{1}{2}}$$

with C depending only on A and the degree of  $\Phi(x, y)$ .

- ▶ Decompose the set  $\{\Phi'_{xy} \neq 0\}$  into  $\{\Phi'_{xy} \neq 0\} = \bigcup_k \{|\Phi'_{xy}| \sim 2^{-k}\}$  with corresponding partition  $\chi_k(x, y)$  and decomposition  $T = \sum_k T_k$ .
- Establish an "oscillatory estimate" and a "size estimate"

```
\|T_k\| \le C (2^{-k}|\lambda|)^{-\frac{1}{2}} 
\|T_k\| \le (I_k J_k)^{\frac{1}{2}}
```

where  $I_k$  and  $J_k$  are the widths along the x and y axes of the set  $\{|\Phi_{xy}''| \sim 2^{-k}\}$ .

Resum in k, exploiting the better of the oscillatory or size estimate.

### The key difficulty

- The sets {|Φ''<sub>xy</sub>| ~ 2<sup>-k</sup>} are usually very complicated geometrically, and the partition χ<sub>k</sub>(x, y) necessarily complicated also. It is essential that the oscillatory estimate be uniform in χ<sub>k</sub>. and this requires very precise versions of the oscillatory integral estimates.
- Curved Box Lemma: Let a curved box B be a set of the form

 $\mathcal{B} = \{ (x, y); \phi(x) < y < \phi(x) + \delta, \ a < x < b \}$ 

for some monotone function  $\phi(x)$ . Assume that the cut-off function satisfies  $|\partial_y^n \chi(x,y)| \leq \delta^{-n}$ , and that  $\Phi_{xy}''$  is a polynomial satisfying  $\mu \leq |\Phi_{xy}''| \leq A\mu$  on  $\mathcal{B}$ . Then the corresponding operator T satisfies

$$\|T\| \le C(\lambda\mu)^{-\frac{1}{2}}$$

with C depending only on A and the degree of  $\Phi(x, y)$ .

Curved Trapezoid Lemma: requires Hardy-Littlewood maximal function (P.-Stein-Sturm)

### Works of Kempe-Ikromov-Müller

 $L^p$  boundedness of maximal Radon transforms for smooth hypersurfaces in  $\mathbb{R}^3$ , p > h(S), where h(S) is the supremum over Newton distances. Applications to conjectures of Stein, losevich-Sawyer, and to restriction theorems.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

### Works of Kempe-Ikromov-Müller

 $L^p$  boundedness of maximal Radon transforms for smooth hypersurfaces in  $\mathbb{R}^3$ , p > h(S), where h(S) is the supremum over Newton distances. Applications to conjectures of Stein, losevich-Sawyer, and to restriction theorems.

### Works of Tang, Greenleaf-Pramanik-Tang, Gressman: Higher Dimensions

► Tang's result: Let  $\Phi(x, z) = \sum_{j=1}^{m-1} P_j(x) z^{m-j}$  be a homogeneous polynomial of degree *m* in  $\mathbb{R}^2 \times \mathbb{R}$ . Assume that the first and the last non-vanishing polynomials  $P_{j_{min}}$  and  $P_{j_{max}}$  are non-degenerate  $(dP(x) \neq 0 \text{ for } x \neq 0)$ , and that  $j_{min} \leq \frac{2m}{3} \leq j_{max}$ . Then for  $m \geq 4$ ,

$$\|T\| \leq C |\lambda|^{-\frac{3}{2m}}.$$

### Works of Kempe-Ikromov-Müller

 $L^p$  boundedness of maximal Radon transforms for smooth hypersurfaces in  $\mathbb{R}^3$ , p > h(S), where h(S) is the supremum over Newton distances. Applications to conjectures of Stein, losevich-Sawyer, and to restriction theorems.

### Works of Tang, Greenleaf-Pramanik-Tang, Gressman: Higher Dimensions

► Tang's result: Let  $\Phi(x, z) = \sum_{j=1}^{m-1} P_j(x) z^{m-j}$  be a homogeneous polynomial of degree *m* in  $\mathbb{R}^2 \times \mathbb{R}$ . Assume that the first and the last non-vanishing polynomials  $P_{j_{min}}$  and  $P_{j_{max}}$  are non-degenerate  $(dP(x) \neq 0 \text{ for } x \neq 0)$ , and that  $j_{min} \leq \frac{2m}{3} \leq j_{max}$ . Then for  $m \geq 4$ ,

$$\|T\| \leq C |\lambda|^{-\frac{3}{2m}}.$$

• Greenleaf-Pramanik-Tang's result: Let  $\Phi(x, z)$  be a homogeneous polynomial of degree m in  $\mathbb{R}^{n_X} \times \mathbb{R}^{n_Y}$ . Assume that S''(x, z) has at least one non-zero entry at every point of  $\mathbb{R}^{n_X+n_Y} \setminus 0$ . Then

$$\|T\| \leq C |\lambda|^{-\frac{n_X+n_Y}{2m}} \quad \text{if} \quad m > n_X + n_Y,$$

and  $||T|| \leq C|\lambda|^{-1/2} \log |\lambda|$  if  $m = n_X + n_Y$ , and  $||T|| \leq C|\lambda|^{-1/2}$  if  $2 \leq m < n_X + n_Y$ .

### Works of Kempe-Ikromov-Müller

 $L^p$  boundedness of maximal Radon transforms for smooth hypersurfaces in  $\mathbb{R}^3$ , p > h(S), where h(S) is the supremum over Newton distances. Applications to conjectures of Stein, losevich-Sawyer, and to restriction theorems.

### Works of Tang, Greenleaf-Pramanik-Tang, Gressman: Higher Dimensions

► Tang's result: Let  $\Phi(x, z) = \sum_{j=1}^{m-1} P_j(x) z^{m-j}$  be a homogeneous polynomial of degree *m* in  $\mathbb{R}^2 \times \mathbb{R}$ . Assume that the first and the last non-vanishing polynomials  $P_{j_{min}}$  and  $P_{j_{max}}$  are non-degenerate  $(dP(x) \neq 0 \text{ for } x \neq 0)$ , and that  $j_{min} \leq \frac{2m}{3} \leq j_{max}$ . Then for  $m \geq 4$ ,

$$\|T\| \leq C |\lambda|^{-\frac{3}{2m}}.$$

• Greenleaf-Pramanik-Tang's result: Let  $\Phi(x, z)$  be a homogeneous polynomial of degree m in  $\mathbb{R}^{n_X} \times \mathbb{R}^{n_Y}$ . Assume that S''(x, z) has at least one non-zero entry at every point of  $\mathbb{R}^{n_X+n_Y} \setminus 0$ . Then

$$\|T\| \leq C |\lambda|^{-\frac{n_X+n_Y}{2m}}$$
 if  $m > n_X + n_Y$ ,

and  $||T|| \leq C|\lambda|^{-1/2} \log |\lambda|$  if  $m = n_X + n_Y$ , and  $||T|| \leq C|\lambda|^{-1/2}$  if  $2 \leq m < n_X + n_Y$ .

► Cubic phases: Greenleaf-Pramanik-Tang  $(n_X = n_Y = 2)$ ; also Gressman.

Problem: formulate uniform estimates with interplay between the decay rate and the configuration of critical points.

- Problem: formulate uniform estimates with interplay between the decay rate and the configuration of critical points.
- ▶ The one-dimensional model: let  $\Phi(x)$  be a monic polynomial of degree N in  $\mathbb{R}$ , and let  $r_j \in \mathbb{C}$ ,  $1 \leq j \leq N$  be its roots. Then there exists constant  $C_N$ , depending only on N, so that

$$|\{x \in \mathbf{R}; |\Phi(x)| < M\}| \le C_N \max_{1 \le j \le N} \min_{S \ni j} \left(\frac{M}{\prod_{k \notin S} |r_k - r_j|}\right)^{\frac{1}{|S|}}$$

where S ranges over all subsets of  $\{1, 2, \dots, N\}$  which contain *j*, and |S| denotes the number of elements in S.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- Problem: formulate uniform estimates with interplay between the decay rate and the configuration of critical points.
- ▶ The one-dimensional model: let  $\Phi(x)$  be a monic polynomial of degree N in  $\mathbb{R}$ , and let  $r_j \in \mathbb{C}$ ,  $1 \leq j \leq N$  be its roots. Then there exists constant  $C_N$ , depending only on N, so that

$$|\{x \in \mathbf{R}; |\Phi(x)| < M\}| \le C_N \max_{1 \le j \le N} \min_{S \ni j} \left(\frac{M}{\prod_{k \notin S} |r_k - r_j|}\right)^{\frac{1}{|S|}}$$

where S ranges over all subsets of  $\{1, 2, \dots, N\}$  which contain *j*, and |S| denotes the number of elements in S.

Can this lead to a geometry on the space of phase functions, which can help identify compact sets within the subspace of phase functions with s specific volume growth rate ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ